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ABSTRACT 

For initial data  in H 2 we prove that  the periodic solutions in space to the 

nonlinear cubic SchrSdinger equation are almost periodic in time. 

1. I n t r o d u c t i o n  

The nonlinear cubic SchrSdinger equation 

iut + uxx - 21ul2u = 0, 

(1.1) u(x + 1, t) = u(x, t), (x, t) e R 2, 

ul,=o = uo, uo(z  + 1) = u0(x), 

is well-posed in L~(R)** [Bourt] and in H~(R) for all s > 0 [Bour2]. This second 

result of J. Bourgain motivates us to prove the almost periodicity of (1.1) for 

initial data u0 in H12(R). In the following we prefer to rewrite (1.1) identifying 
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the complex u(x, t) with p(x, t) + iq(x, t) where p and q are real valued: 

(1.2) 

qt \ qx~ + 2(p2 + q2) , 

p ( x + l , t ) = p ( x , t ) ,  q (x+l , t )=q(x , t ) ,  

(P,q)lt=o = (Po,qo), po(x+ 1) = p o (x ) ,  po(x+ 1) =po(x), 

(01 o 1) �9 

is the self-adjoint operator of Lax pair associated with (1.1a). 

Set ~J  = {(p,q) e H~([0,1])2[ p(k)(1) = p(k)(0), q(k)(1) = q(k)(0), k = 

0 , . . . , j  - 1}. Consider the operator Tl(p,q) with (p,q) in H~(R) 2 and with 

the periodic self-adjoint boundary conditions F(x + 2) = F(x), and consider 

?-/(p, q) with (p, q) in 7_/1 with the self-adjoint boundary conditions F(1) = F(0) 

(or F(1) = -F (0 ) ) .  These two operators have the same isospectral sets denoted 

Iso(p, q) by identifying H~(R) 2 with 7-/1. Moreover for (p, q) E 7-I 2, Iso(p, q) C 7-/2. 

The spectrum of 7-/(p, q) in 7./1 with the latter boundary conditions is a pure point 

spectrum. We denote by (Ak(P,q))keZ the increasing sequence of eigenvalues. 

Due to the Lax formulation each Ak(p, q) is a conserved quantity of (1.1). We 

then want to prove the almost periodicity in time of the flow (p(t), q(t)) solution 

to (P t]  =T2(p,q), (p,q)[t=oETl 2. (p(t),q(t))E Iso(po, qo) CT-/2 is the flow 
/ \ 

\ / qt 
associated with the vector field (p, q) ~ T2(p, q) tangent to Iso(p0, q0). 

In 1974-75 the periodicity in time for the KdV equation has been studied 

by P. Lax [Laxl] [Lax2], V. A. Marchenko [Mar], S. P. Novikov and S. A. 

Dubrovin [Nov], H. P. McKean and P. Van Moeberke [McK-VanMoe]. In 1976 

H. P. McKean and E. Trubowitz [McK-Tru] gave the result of the almost peri- 

odicity in H 3 for KdV. Recently J. Bourgain [Bout3] has shown how to extend 

the works of [McK-Tru] in L~. 

For solving the case of the nonlinear Schrhdinger equation in H 2 we used the 

works of [McK-Tru] and the results of [Gr~-Gui]. 

We now give briefly some results related to the periodic A K N S  operator. 

These results have been established in [Gr~] and [Gr~-Gui]. See these references 

for precise details. 

whero denotes 
The A K N S  system ?-/(p, q) defined by 
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We denote by Fl(X, .~,p, q)[resp. F2(x, .~,p, q)] the solution to 7"i(p, q)F = hF 
with FI(O,.~,p,q) = (1,0) T [resp. F2(O,h,p,q) = (0,1)T]. For i = 1 and 2, 

Y~ and Zi are the two components of Fi. The eigenvalues hk's are the zeros of 

the entire function h ~-~ A2(h) - 4 = (YI(1, h) + Z2(1, h))  2 - 4. Set m+(h) = 

�89 [A(h)•  (A2(h ) -4 )  �89 b+ = ((m+ (h)-Y1 (1, h))/Y2(1, h) = Z1(1, )O/(m• 
Z2(1, h)) and f• = Fl(x,h) + b• Then f+(x, hk) = f_(x,  hk) 
is an eigenfunction associated with the eigenvalue ha. 

For a = and b = two elements of C 2, we define the following 
a2 b2 

bilinear forms: 

u(a,b) = albl - a2b2, v(a,b) = alb2 + a2bl, w(a,b) --- albl + a2b2. 

( c3G/Op ~ where OG/Of is the Fr~chet derivative We denote by Vp,qG the vector \ OG/Oq .] 

with respect to f of G. For (p, q) �9 L~([0, 1]) 2, 

Vp,qA(hk) ( v(f+(x, h), f_(x,  .~) 
(1.4) Vp ,qhk-  OA ' / 

oh (hk) 

The Dirichlet spectrum is the spectrum of 7/(p, q) associated with the boundary 

conditions Y(0) -- Y(1) = 0. The Dirichlet spectrum is a strictly increasing 

sequence of eigenvalues of multiplicity one and denoted (#k(p, q))kez" 

Finally we recall that the map K x # defined by 

(K • #)(p,q)= ( (Z2(1 ,# j (p ,q) ,p ,q)- ( -1)J) jez  , (# j (p ,q)- jrc) jez)  

is a real global bianalytic coordinate system on L~([0, 1]) 2 into e~(Z) 2. This 

coordinate system allows a parameterization of the isospectral sets Iso(p, q), and 

generically Iso(p, q) is an infinite product of circles. 

The following is divided into two parts. In the first section we give a sequence of 

tangent vectors to Iso(p, q) defined by induction, which leads to the expansion of 

T2 on the family of tangent vectors V • A(h2k)'s In the second section the similar p , q  ' .  . �9 

expansions of each element of another sequence of tangent vectors generating 

periodic flows in time, leads to the almost periodicity of the flow associated 

with T2. 

Finally note the recent results of [BBGK] related to Theorem 3.2. 
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2. A class of  tangent vectors 

The vectors 

T o - -  

qx ' 

�9 

\ qxx § 2(p2 + q2) 

are tangent to Iso(p, q) and the solutions to (Pt, qt) = Ti(p, q) with initial data  

(Po, q0) (i = 0, 1, 2) are isospectral, i.e. for all t, the periodic spectrum of the 

operator 7/(p(t), q(t)) is the same as that  of the operator 7-/(po, qo)- The rotation 

flow (p(t), q(t)) = (Po cos t § q0 sin t, -po sin t + q0 cos t) is associated with To 

and it is isospectral (cf. [Am, Th. 2.1]). The translation flow (p(x, t), q(x, t)) = 

(po(x - t), qo(x - t)) corresponds with T1; it is obviously isospectral. The flow 

associated with T2 is a solution to the nonlinear cubic SchrSdinger equation. 

These vectors are in fact the three first of a sequence defined by induction of 

tangent vectors to Iso(p, q). 

For g a sufficiently smooth function of x we denote by P[g] one primitive with 

respect to x of g. 

THEOREM 2.1: For (p, q) e C~~ 1]) 2 each vector of  the sequence 

T o =  

is tangent to Iso(p, q). 

Remark  1: To obtain the complex form of Theorem 2.1 one identifies L~([0,1]) 

with L~([0, 1]) 2 by u = p + iq. This gives the following sequence of tangent 

vectors: 

To = - i u ,  T,~+2 = iDxTm - 2iuP[uTm + fiTm]. 
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In particular a special choice of P gives T1 = u~ and T2 = iu~  - 2i]u]2u. 
The first and second primitives take the values 0 and [u(0)[ 2 respectively, at 

x - - 0 .  

Remark 2: In Theorem 2.1 the fact that  P is defined up to an additive constant 

is possible since it consequently adds for each Tm a constant multiplied by the 

tangent vector = To. 

We will use the following lemma in the proof of Theorem 2.1. The wronskian 

of F and G is defined by [F, G] = w(F, G• 

C L~([0,1]) 2, suppose that 7-l(p,q)F = #F and LEMMA 2.2: For (p, q) 
7-l(p, q)G = uG. Then 

(u(F,G)  
(2.1) Dx \ v( f ,  G) ) +2 w ( f , G ) = ( # + u )  - u ( F , G ) ] '  

(2.2) Dxw(F ,G)+2pu(F ,G)+2qv(F ,G)=(u-# ) [F ,G] .  

Proo fo fLemma2.2:  S u p p ~  a n d G = ( G 1 )  G2 

hypothesis of the Lemma. Multiply the two lines of the system Tl(p, q)F = #F 
by G2 and G1 respectively and the two equations. Add to this equation the 

similar one obtained by exchanging F and G as well as # and v to obtain the 

first equation of (2.1). The second equation of (2.1) and (2.2) can be proved in 

a similar way. | 

Proof of Theorem 2.1: For the solution to (Pt, qt) = Tm(p,q) we define for 

all j E Z, T,~Aj d = ~Aj(p ,q) .  Using (1.4) and Lemma 2.2 with (F,G,l~,u) = 
(f,  f ,  Aj, Aj) where f (x)  = f+(x, Aj) = f_(x,  Aj), we have 

2AjTmAj = (2AjVp,qAj; Tin) 

vr ,,; 
Integrating by parts the preceding equation and using (2.2) we obtain 

2)~jTm)~j = (2Aj Vp,qAj; Tm) 

v ( I , I )  ' ' " 

Thus 

2AjTmAj = Tm+~Aj, Vj 6 Z. 

Consequently Tm is tangent for all m _> 1 if To is tangent. | 
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Remark 3: The fact that  (p, q) �9 C~([0, 1]) 2 is used for the integration by parts 

in the preceding proof for all m E N. Of course for m <_ 2 it is sufficient to 

consider (p, q) �9 7-/5. 

The interpolation theorem below will be used in the following. Define 

E = {F(z)  entire of order 1 and with type at most 1, such that 

The interpolation points are the/~i, i �9 Z sequence of Dirichlet eigenvalues for 

an operator 7-/(p, q) and zero of A ~ Y2(1, A,p, q). 

THEOREM 2.3 (Theorem of interpolation): The restriction application 

F ~ ( F ( , , ) ) , ~ z  

is one to one from E into g~(Z). Moreover, the converse application is given by 
the formula 

Y2(1, z) , Vz �9 c .  
r(z )  = E f (# , )  ~zOY'(l'#i)(z #i) IEZ 

Proof of Theorem 2.3: It is an adaptation of [McK-Tru, sec. 5]. See this reference 

for precise details. We fix (p, q) �9 L~([0, 1]) in the following. 

Set e(z) = Y2(1, z) +iZ2(1, z). We have le(z)[ > le(z*)l for Imz > 0. 

Indeed the development e(z)(e(z))* -e(z*)(e(z*))* gives 

[ e ( z ) l  2 - l e ( z ' ) l  2 = 2 i ( Y ~ * ( 1 ,  z)Z2(1, z) - 112(1, z)Z~(1, z)) 

L 1 = 4Im Dx(Y2(x,z)Z~(x,z))dx. 

By direct calculus 

Dx(Y2(z, z)Z~(x, z)) = - q(x)OY2(x, z)l 2 + IZ2(x, z)l 2) 

+ zIZ~(x, z)l  2 - z* lV2(x ,  z) l  ~ 

We then obtain le(z)l 2 - l e ( z * ) l  2 > 0 since q(x) is real and - I m z *  = Imz > 0. 

We define B the subset of entire functions as in [McK-Tru, p. 169] or [De Bran, 
1 p. 52] with the scalar product B[F, G] = ~ f+_~ F(z)G*(z)ie(z)] -2 dz, and A the 

set of functions F defined on the #i with A[F, F] = ~ N(21F(#i)I 2 < +o c, where 
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N~ F 2 0112(1 ' = II (',#i)HL~([0,1])2 - ~-z #i)Z2(1,#i). A and B are Hilbert space. The 
functions 

(2.3) z ~-~ l~(z) = (e*(oz)e(z) - e(a*)e*(z*))/2i(e~* - z) 

generate A and B. Moreover, for all F E B we have F(z) = B[F, 1~]. 

The key of the proof is then to prove 

(2.4) Ally, 1~] = B[I~, 1,], V(a, Z) 6 C 2, 

which shows that the restriction application is an isomorphism from B to A. 

Then we can identify B with E and A with g~(Z) (cf [McK-Tru, p. 172]). Let us 

(2.5) 

hence 

prove (2.4). With (2.3) we have 

l~(/zk) = Z2(1,#k)Y;(a) 
0~* - -  # k  

A[I~, 1~] = ~ Nk -2 l~(#k)l*(#k) 
kEZ 

(2.6) 

, V k E Z  

zi(1 , ,k)  = Y~*(l' ~)Y2(1' Z) ~-~ g / ~  (-* - ,k)(Z - ,k) 
kEZ 

Y2* (1, o~)Y2(1,/3) ~ 1 _ ,  #k) Z_22(1, ~__k) ~ 
= ~----~ E N C ' ( a  - t t k  e - P k  /" 

kEZ 

The two sums in (2.6) are expressed using the given expansions in [Lev-Sar] of the 

kernel of the resolvant G(x, y, A) of the operator 7-/(p, q) - s G(x, y, A) is given 

by [Lev-Sar, p. 195] for x r y and [Lev-Sar, Lemma 11.3.2, p. 314] shows that 

the application (x, y) ~ G22(x, y, A) is continuous through the line x = y. We 

then obtain with the definition of ~v(A), ~(x, A) and ~n(x, A) of [Lev-Sar, (4.6), 

p. 319]: 

[~T(1, A)~n(1, A)]22 (2.7) ~ ( - - ~ ) ) -  G~(1,1,A) = ~ ~ : ~  
nEZ 

Observe that A has been changed in -A to pass from the definition of the oper- 

ator L in [Lev-Sar, (3.2), p. 310] to the definition of "H(p,q). Clearly ~,~(x) = 

F2(x,#n)(Y2(1,#,~)Z2(1,#,~)) -�89 w(A) = ~o1(1, A) = Y2(1, A) and from (2.7) 

z~(1, ~) z~(1,.n) 
Y 2 ( 1 " ~ ) -  E("~--#n)-lnez Y• 
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which is used for the computation of (2.6). We obtain 

(2.8) A[1,, 1~] = (~-c~*)-I(z~(1, a)Y2(1, B)-Y~(1,c~)Z2(1,~)). 

Besides, a direct calculus shows 1~(~) is equal to the right hand side of (2.8). 

Equality (2.4) is then verified since 1~(~) = B[I~, lz]. 

The interpolation formula comes immediately from F(z) = A[F, 1~] for F E E 

using (2.5). | 

We know that for all $, V~qA(~) is tangent to Iso(p, q). In particular for 

all j E Z, V~qA($2j) is tangent to Iso(p, q). Using the interpolation theorem 

we will give an expansion in V~qA(~2j) of each Tin. Before, we must check 

that each component of Vp,qA(A) is an entire function of A which belongs to E, 

and consequently check it is in L2(R). This results from the following theorem 

together with the asymptotic behavior of F1 and F2 for (p, q) in 7/:. 

(Ttg)(x) denotes g(t + x) for any g function of x. 

THEOREM 2.4: For (p, q) E L2([0, 1]) 2 

Vp(t),q(t)A(A) = - E l  (1,)t, Ttp, Ttq) + F2-L (1,)~, Ttp, Ttq). 

Proof of Theorem 2.4: It is easy to see that 

Fl(x, ~, Ttp, Ttq) =Z2(t, ~, p, q)Fl(X + t, X,p, q) 

(2.9) - -  Zl(t' A'p' q)F2(x + t, A,p, q), 
F2(x, ~, Ttp, Ttq) = - Y2(t, $,p, q)FI(X + t, )~,p, q) 

+ Yl(t, $,p,q)F2(x + t, ~,p,q), 

since the left hand side and the right hand side of (2.9a) [resp. (2.9b)] ver- 

ify the same system with the same data at x = 0. Besides, we have from 

[Gr6, Th. 2(i)(ii), p. 132] 

(v(Y2(1)FI(t)  + Z2(I)F2(t),FI(t)) ) 
Vp'qA('~'P'q) = -u(Y2(1)Fl(t) + Z2(1)F2(t),FI(t)) 

(v (Yl (1)Fl ( t )  + ZI(1)F2(t),FI(t)) 
-U(Yl(1)Fl(t) -4- Zl(1)F2(t), El(t)) / 

where the right members axe evaluated at (~, p, q). Consequently 

/" v(F2(1 + t), Fl(t)) - v(Fl(1 + t), F2(t)) 
Vp,qA()~,p,q) = ~ -u(F2(1 + t), F,(t)) + u(Fl(1 + t), F2(t)) ) "  
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Considering (2.8) and (2.9) for x = 1 it becomes 

v(F2(1 + t), Fl(t))  - V(Fl(1 + t), F2(t)) = -111(1, ~, Ttp, Ttq) + Z2(1, ~, Ttp, Ttq) 

and 

-u(F2(1  +t ) ,  Fl(t)) + u(F1 (1 + t), F2(t)) = -Y2(1, ~, Ttp, Ttq) - ZI(1, )~, Ttp, Ttq) 

which proves the theorem. II 

The asymptotic behaviors of Fl(x, A,p, q) and F2(x, )~,p, q) for (p, q) E 7-( 2 are 

given by [Gr6, (2.1-2), p. 121]. We then deduce with Theorem 2.4 

(2.10) vp(~),q(t)A(~) - 2sin~ {p ( t )~  + O(~_~) 
A \ q ( t ) /  

for (p, q) E 7-/2 with O(A -2) uniformly in t. 

For (p, q) given there exist (Pl, ql) E Iso(p, q) with #i(Pl, qi) = A:,(p, q), Vi E 

Z. (This is a consequence of [Gr~, Th. 7, p. 138].) The chosen interpolation 

points are the A2i(p,q) = #i(Pl,ql) .  Thus 

Y2(1, ,~, pi, ql ) 
(2.11) Vp,qA()~,p,q) = ~ V p , q A ( A 2 i , p , q ) ~ 2 ( 1 , ~ 2 ~ , p ~  - )~2i) 

iEz 

( " denotes 0 /0h) .  We prefer to consider the normalized eigenfunctions 

fk(x, p, q) = f+(x, &~(p, q),p, q) l l f :d ,  Ak(p, q),p, q)ilZ~([0,1])2. 
LEMMA 2.5: For (p, q) E LR([0, 1]) 2 

{ v(f~,(x),f~,(x)) 
Vp(x),q(x)A(~2i) = --f~(~2i,P, q) \ -u(f2,(x), f2i(x)) ) "  

Proof  of Lemma 2.5: From (1.4) we have for all i E Z, 

v(f2i, f2i) 
v~,~,~(~:~) = c, _~(f:~,  f:~) }. 

It remains to evaluate ci. Obviously 

w(f+(x, ~), f_(x, ~))1~:~2, = ciw(f2i(x), f21(x)). 
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j~o 1 c, = w(f+(x,.~),f_(x,A))lx=),2, dx. 

The same calculus as in [Gr~, p. 132-133] shows that for all A E C, 

(2.13) 
Y2(1)w(f+(x), f_(x))  =Y2(1)W(Fl(X), F~(x)) - Zl(1)w(F2(x), F2(x)) 

+ (Z2(1) - Yi(1))w(Fl(x),  F2(x)). 

If F -- (Y, Z) T is a solution to ?-l(p, q)F = .~F, then 

(2.14a) 

(2.14b) 

- 2~ - q~" + p2  = Y + ~ ' ,  

Y~ + p~" + q2 = Z + )~2, 

where the subscript x denotes the derivation with respect to x. If F = (Y, 2)T 

is also a solution to ?-/(p, q)F = AF, then (2.14a) multiplied by 1~ and added to 

(2.14b) multiplied by 2 gives 

(2.15) w(F, $3 = ~'2 - 2? .  

Integrating (2.15), knowing that for i = 1, 2, ~ (0 ,  A) = ,~i(0, A) = 0 for all A E C, 

we obtain 

(2.16) 

o 1 w(f~(x, ~), f~(x, ~)) ax =?lZ~ - 21Y21(x=~,~), 

~o 1 w(F:(x, ~), F2(x, .~)) dx =I"2Z2 - 2 2 Y 2 1 ( ~ = 1 , ~ , ) .  

From the computation of fo dx of the right hand side of (2.13) using expressions 

(2.16) for ~ = A2i and using [Fl(x, .~), F2(x, ~)] -- 1, we have 

fo 1 w(f+(x, ~), f_(x, ~))J~=~,  dx = - 7 1 ( 1 ,  ~2,) - 22(1, ~2,) 

which ends the proof of Lemma 2.5. | 
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Equality (2.11) becomes with Lemma 2.5: 

Y2(1, A,pl,ql) 
Vp(~),q(~:)A(A,p,q) = Z ]z2(1, ~ q-~(-A- A2,) 

iEZ 

(2.17) • -A(A2i,p, q) ( v(.f2,(x,p, q), f2,(x,p, q)) 
-u(f2i(x, p, q), f2i(x, P, q)) ) 

Yz(1, A,pl,ql) 
(2.18) = - ~  

A - A2i X~ 

where 

[ u(f2i(x,p, q), f2i(x,p, q)) ) /~ (X2i, p, q) 
Xi = \ v(f2i(x,p,q),f2i(x,p,q)) and r = Y2(1,A2i,pl,ql)" 

The method used in [McK-Tru, Th. 6.1] shows that r = O(A2i - A2i-1). 

deduce from (2.10) and (2.18) that for [A] large 

2q '~ Y2(1, A) Vp,qA(A) = - Z A --- A2, ~ -u( f2 , ,  12i) ] '  
iEZ 

that is to say 

(2.19) To = = ~ ~ ~, Z,.  
iEZ 

Applying to (2.19) the operator s defined by 

we obtain using (2.1-2) with v = # = A and F = G = ]2i 

(2.20) 

() P* = T I = Z e ,  A2, v(f2,,f21)] + 2 c  q~ iez 

-- E ~(~  + ~) (~(s~' s~)) 
iEZ 

with 

(2.21) 2~ = ~ ~,~(/~,,/~,)l~=o. 
IEZ 

We 
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In the same way s applied to T: gives 

(2.22) T2 = Er (2A2i(A21 + c) + d) \//u(S21, f2ilv(S2i, f2,) ) 
~EZ 

with 

(2.23) + c)w(f2,,/,01.=o) +p'(0) + q2(0). 
iEZ 

Remark 4: We can repeat this process to obtain the expansions in Xi of each 

Tm for m_> 0. 

LEMMA 2.6: The real valued [unctions c and d are constant on Iso(p, q). 

Proof of Lemma 2.6: Add the first equation of (2.19) multiplied by p to the 

second equation of (2.19) multiplied by q and use (2.2) to obtain 0 = ~ r w 

(f2i, f2,) for all x �9 [0, 11. We then apply f~ dx fods  to the preceding equation 

and obtain 

which concludes the proof for c with (2.21). In the same way we deduce from 

(2.20) 

II(p, 2 = q)llL~([O,l])" (E r I)) +p2(O) + q2(O), 
iEZ 

and consequently, using (2.23), d is constant on Iso(p, q) since II(P, q)llL~([0,1]) is 

itself a spectral invariant of the periodic problem. | 

3. Almost  periodicity in t ime 

We recall that for each k E Z the flow associated with the tangent vector field 

Vk = V~qA(#k) exists for all time and along this flow, only the kth coordinate 

(Kk, #k) of the coordinate system K x # is not stationary. More precisely this 

coordinate is never stationary. Since (Kk, #k) describes completely a circle in 

finite time, the flow (pk(.,t), qk(.,t)) associated to Vk is periodic. To evaluate 

the period ~rk of the flow (pk(t), qk(t)) we consider without loss of generality that 

the initial data (P:, q:) at t = 0 verifies #~ (Pl, q:) = ~2~- 1 (Pl, q:), Vi E Z. The 

evolution of #k along the flow (pk(t), qk(t)) is given by the differential equation 
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0t#k = 4-v/A2(#k) - 4 . The proof and details about the sign 4- are given in 

[Gr~, pp. 136-137]. 

We then define 7rk/2 as the smaller positive real such that #k(pk(lrk), qk(rk)) = 

A2k. Since ~rk/2 = fo~/2dt, by the following change of variable ~t = I~k(Pk(t), 

qk(t)) we obtain 

~rk [~2k d/z 
(3.1) 

We then prove easily (cf. [McK-Tru, Lemma 11.1]) that  rk is comparable 

to 1, i.e. Irk is minorazed and majorazed by two real strictly positive numbers, 

independent of k. Thus the associated flow to W k = rkV~ is 1-periodic in time. 

We define T = (rj)jez and the sequences w i = (w~)jez for each i E Z by 

Y2(I, #i) 
(3.2) T j = e i ( d + 2 A 2 j ( c + A 2 j ) )  and w } = l h  . 

Y (1, - 

so that  for each i ~ Z, W i = ~ j e z  w~Xj and T2 = ~ e z  ~-jX3 (cf. (2.17)). 

We denote by I the set of real sequences x indexed on Z such that  Ilxl[x = 

x/2(1 + i2)-3 < -4-oo. Clearly T e I and the sequences w i E I for each i ~ Z. 

LEMMA 3.1: 

(i) Every x E I can be written as ~ i e z  Yi wi with y E I. 

(ii) For L = {x = ~ ylw i E I with y e I and Yi integer for all i } the quotient 

space I / L is compact. 

Proof of Lemma 3.1: (i) If a E I is orthogonal to w i for all i E Z, then 

0 = E (1 + j2)-3ajw~ = ~hF(#,), V ie  Z 
jEz 

with F E E and F(A2j) = (1 + j2)-3aj (F does not depend on i) using formula 

(3.2) for wj and the interpolation theorem at the points A2j. Thus F =- 0 using 

again the interpolation theorem at the points pj and then a j  = 0 for all j E Z. 

For a l l x  E I w e  define ~ by ~j = ( l + j 2 ) - 3 / 2 x j  for every j ~ Z. Thus 

x ~ I ~ ~ ~ s We then consider ~ as an element of the dual of E by 

~(F) = ~F(A2~)~i  for all F e E. Then ~y~w~ e I if and only if ~y~z~(F) 

converges weakly in s 

E Y'&i(F) = E y' E (1 + j2)-]w~F(A2~) = E y,~iG(#i) 
i~Z j ~ Z  i~Z 
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where G E E with G(A2j) = (1 + j2)-3/2F(A2j) in using the interpolation 

theorem. Moreover, using equality (2.4), A[G, 1~] = B[G, 1~] = G(a) suc- 

cessively with a = #i and a = A2i, we can see that G(#i) is comparable to 

G(A2i) with constants independent of G and i. Consequently ~ yi&i(F) is com- 
.2 3_ parable to ~ yiTri(1 + z )-2 F(A2i), which converges if and only if y E I. 

(ii) From (i) if x �9 I l L  then x can be written ~ yiw i with yi �9 [0, 1[. We 

obtain as in (i) and with the same notations, that for all F �9 E, :~(F) is compa- 

rable to ~ y i ( 1  § We then deduce that I&(F)I _< C~--~ [F(A2j)[ 2 

with a constant C independent of F. Since ~ IF(A2j)I 2 is comparable to 

f + ~  [F(z)12dz from A[F, F] = B[F, F], we obtain 

[[X[[l = [l&[[2~(z)= sup [[~:(F)[[ < C 
Ilfll~=l 

where the constant C is independent of (Yi)iez. Proceeding exactly in the same 

way we obtain that limj-~+oo ~-:~lilj [ xi12(1 + i2)-3 = 0 uniformly in x E I /L .  
| 

THEOREM 3.2 (Almost periodicity of NLS): For any e > 0 there exists ~(~) < 

+oc such that all intervals of  length a t /eas t  ~(c) contain a real number T > 0 

satisfying: the solution to (1.1) verifies for all t E R, 

I[u(., t + T) - u(-, t)[[L~([0,Z]) < e, 

independently of  any initial data in Iso(uo). 

Proof of  Theorem 3.2: Identifying u(x, t) with p(x, t) + iq(x, t) where p and q 

are real valued, it is now as for the KdV equation a consequence of the inequality 

(see [Mck-Tru, Lemma 11.2] for an analogous calculus) 

q(.,t  + T) - < q(.,t) -< CinfoEL I[TT -- Olli 

for all reals t and T. The constant C depends only on Iso(po, qo) and then not 

on T. The proof is finished by recalling that any flow of the form T ~ xo + T x  

is almost periodic on a compact set. | 
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